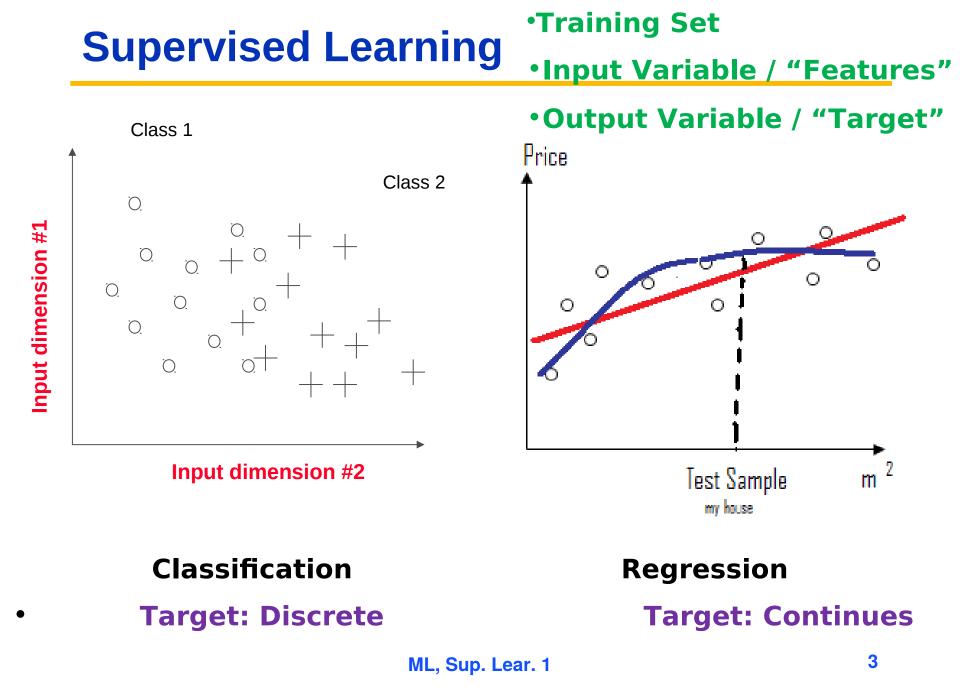
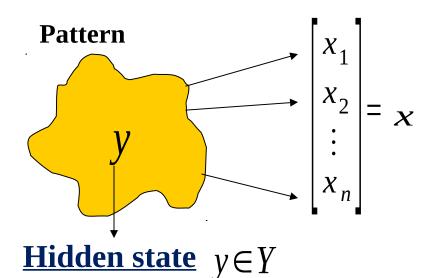
Supervised Learning:

Pattern Recognition System

- In supervised learning, the aim is to learn a mapping from the input to an output whose correct values are provided by a supervisor.
- There are many applications of machine learning in *pattern recognition.*
 - optical character recognition
 - face recognition
 - medical diagnosis (ECG, EEG signal classification)
 - speech recognition
 - time-series prediction



Basic concepts



<u>Feature vector</u> $x \equiv X$

- A vector of observations (measurements).

- \boldsymbol{X} s a point in feature space X .

- Cannot be directly measured.
- Patterns with equal hidden state belong to the same class.

<u>Task</u>

- To design a classifer (decision rule) $q: X \rightarrow Y \longleftarrow$
- which decides about a hidden state based on an onbservation.

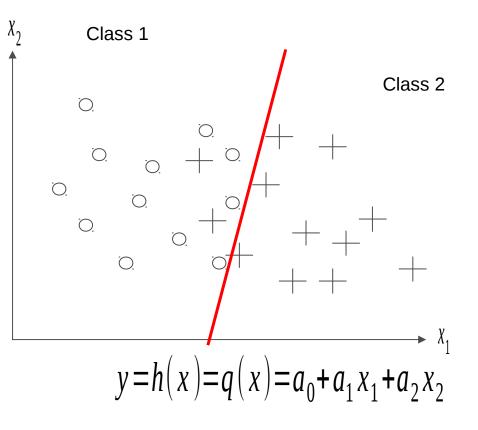
 $v = q(x) = a_0 + a_1 x_1 \dots + a_n x_n$

Hypothesis (q) _ Decision Surface

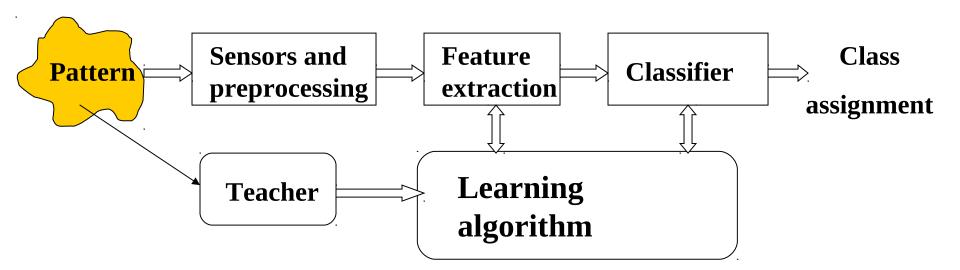
$$y = q(x) = a_0 + a_1 x_1 \dots + a_n x_n$$

 $y = q(x) = \sum_{i=0}^{i=n} a_i x_i$

N: number of features



Components of PR system



- Sensors and preprocessing.
- A feature extraction aims to create discriminative features good for classification.
- A classifier.
- A teacher provides information about hidden state supervised learning.
- A learning algorithm sets PR from training examples.

Pattern Recognition System

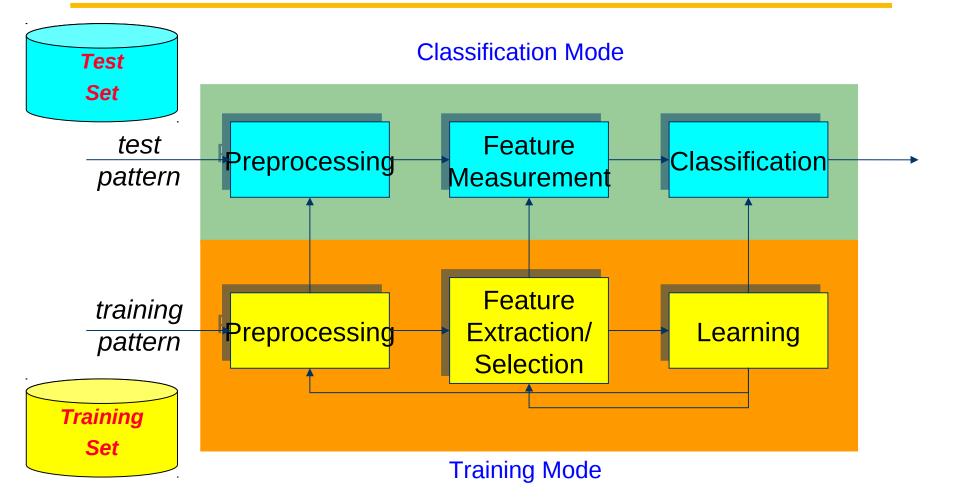
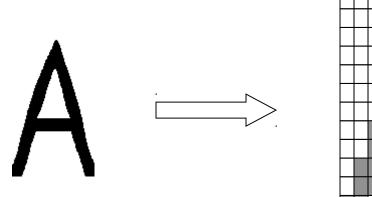
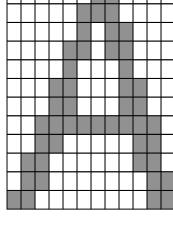


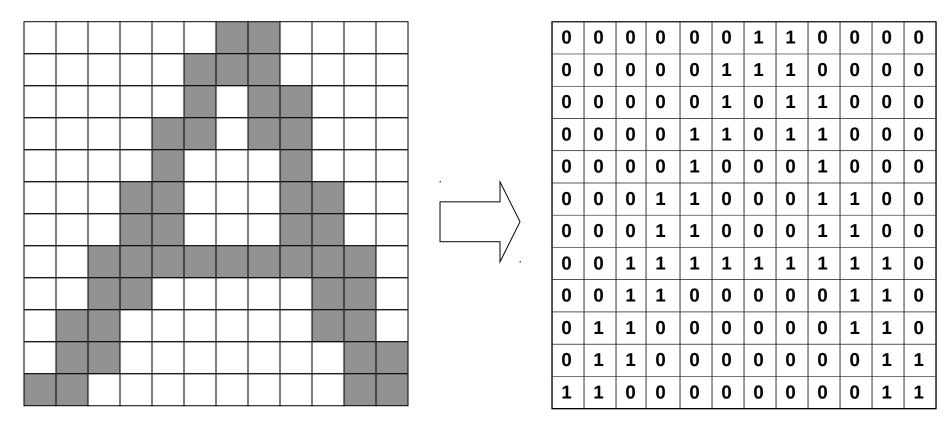
Image is converted into 12x12 bitmap.





Template Matching

Bitmap is represented by 12x12-matrix or by 144-vector with 0 and 1 coordinates.



Template Matching

Training samples – templates with corresponding class:

$$t_{1} = \{ (0,0,0,0,1,1,...,0), 'A' \}$$

$$t_{2} = \{ (0,0,0,0,0,1,...,0), 'A' \}$$

.....

$$t_{k} = \{ (0,0,1,1,1,1,...,0), 'B' \}$$

Template of the image to be recognized:

........

$$T = \{ (0,0,0,0,1,1,\ldots,0), 'A' \}$$

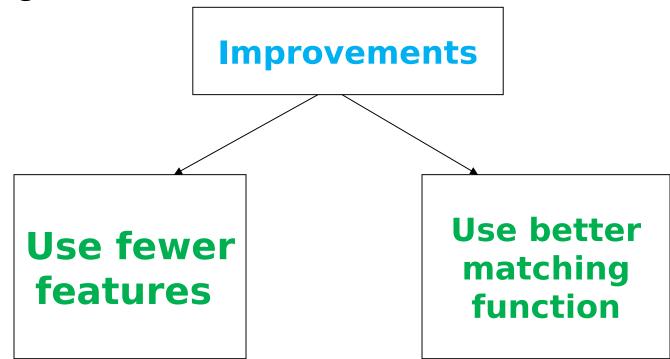
Algorithm:

- 1. Find t_i , so that $t_i = T$.
- 2. Assign image to the same class as t_i .

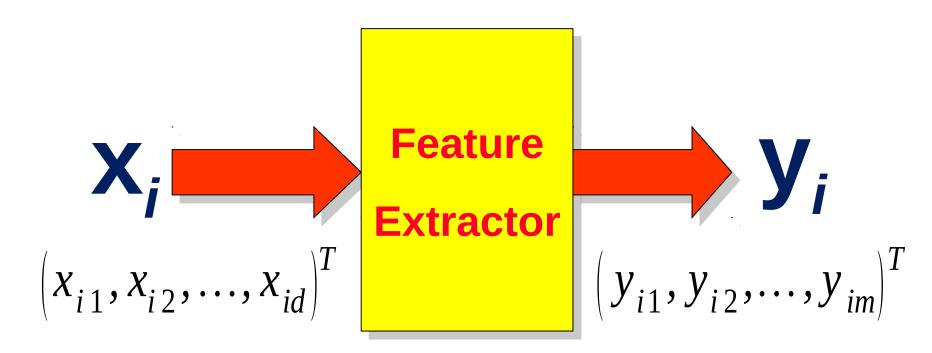
ML, Sup. Lear. 1

Template Matching

Number of templates to store: 2¹⁴⁴ **If fewer templates are stored, some images might not be recognized.**



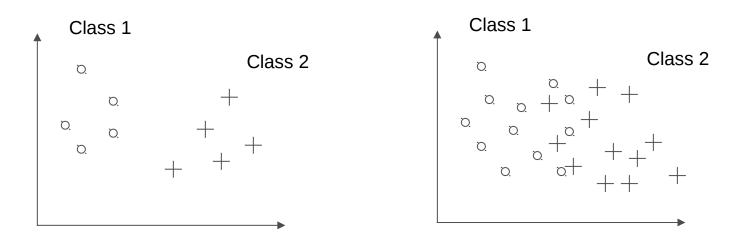
Feature Extractor



$m \leq d$, usually

Feature

- **Features** are numerically expressed properties of the signal.
- The set of features used for pattern recognition is called *feature vector*.
- •The number of used features is the **<u>dimensionality</u>** of the feature vector.
- n-dimensional feature vectors can be represented as points in n-dimensional <u>feature space.</u>



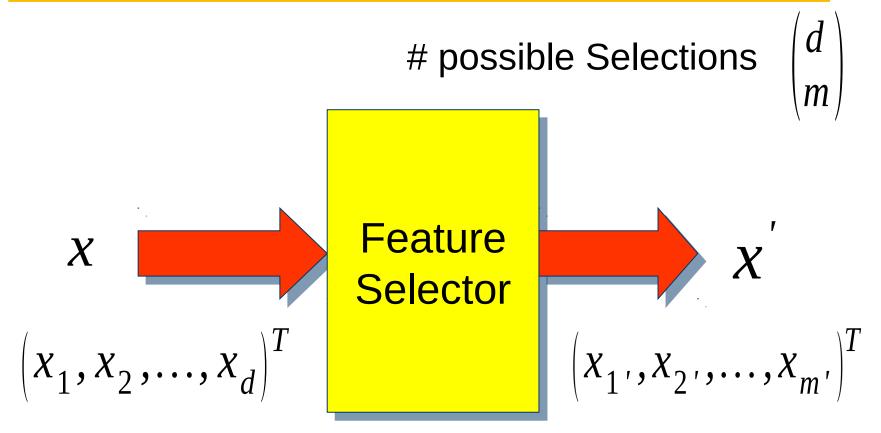
Some Important Methods

- or Karhunen-Loeve Expansion
- Independent Component Analysis (ICA)
- Factor Analysis
- Discriminate Analysis

- Kernel PCA
- Multidimensional Scaling (MDS)

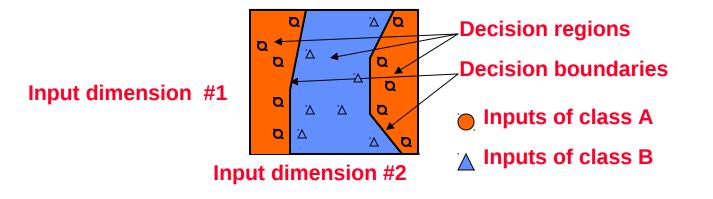
- Feed-Forward Neural Networks
- Self-Organizing Map

Feature Selector •Feature Fusio



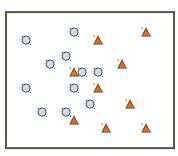
$m \leq d$, usually

A *classifier* can be viewed as a function of block. A classifier assigns one class to each point of the input space. The input space is thus partitioned into disjoint subsets, called *decision regions*, each associated with a class.



- The way a classifier classifies inputs is defined by its decision regions.
- The borderlines between decision regions are called *decision-region boundaries* or simply *decision boundaries*.

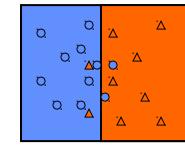
Input dimension #1



Input dimension #2

In practice, input vectors of different classes are rarely so neatly distinguishable. Samples of different classes may have same input vectors. Due to such a *uncertainty*, areas of input space can be clouded by a mixture of samples of different classes.

Input dimension #1

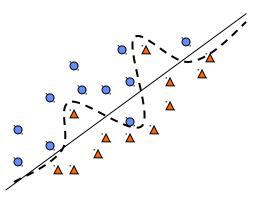


Input dimension #2

- The optimal classifier is the one expected to produce the least number of misclassifications(Error Reduction).
- Such misclassifications are due to uncertainty in the problem rather than a deficiency in the decision regions.

 A designed classifier is said to generalize well if the classifier achieves similar classification accuracy to both training samples and real world samples

Input dimension #2



Input dimension #1