Supervised Learning:

Pattern Recognition System



Supervised Learning

* In supervised learning, the aim is to learn a
mapping from the input to an output whose
correct values are provided by a supervisor.

* There are many applications of machine learning in
pattern recognition.

- optical character recognition

- face recognition
- medical diagnosis (ECG, EEG signal classification)

- speech recognition
- time-series prediction
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Basic concepts
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- Cannot be directly measured.

- Patterns with equal hidden state belong to the same class.
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- To design a classifer (decision rule) (: X=Y
which decides about a hidden state based on an onbservation.
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Components of PR system
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* Sensors and preprocessing.
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algorithm

* A feature extraction aims to create discriminative features good

for classification.
* A classifier.

* A teacher provides information about hidden state - supervised

learning.

* A learning algorithm sets PR from training examples.



Pattern Recognition System
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Template Matching

Image is converted into 12x12 bitmap.

A
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Bitmap is represented by 12x12-matrix or by 144-vector with 0

and 1 coordinates.

Template Matching
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Template Matching

Training samples — templates with corresponding class:

t,=1(0,0,0,0,1,1,...,0), 'A’]
t,={(0,0,0,0,0,1,...,0), A"}

t.={(0,0,1,1,1,1,...,0), 'B']

Template of the image to be recognized:
T=((0,0,00,11,...,0), A"}

Algorithm:
1. Find ¢, so that ¢ =T .

2. Assign image to the same class as ¢..
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Template Matching

Number of templates to store: 2
If fewer templates are stored, some images might not be

recognized.

144

Improvements

Use fewer
features

N

Use better
matching
function
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Feature Extractor
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Feature

* Features are numerically expressed properties of the signal.

* The set of features used for pattern recognition is called feature vector.

*The number of used features is the dimensionality of the feature vector.

* n-dimensional feature vectors can be represented as points in
n-dimensional feature space.

Class 1 , Class1
5 Class 2 o Class 2
o —+ o 4 _ﬁ o _:_ -+
O O
'e) © + —|— O ° o —I_O + _|_+
—+ + o ot 1+
++

\4

ML, Sup. Lear. 1 13



Some Important Methods

® Principal Component Analysis (PCA)

- or Karhunen-Loeve Expansion
Independent Component Analysis (ICA)
Factor Analysis
Discriminate Analysis

Kernel PCA
Multidimensional Scaling (MDS)

Feed-Forward Neural Networks
Self-Organizing Map
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Feature Selector ‘Feature Fusic
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Classification: Terminology

Input Vector lassifi Output
(Feature) e Classifier ——3 (Class)

A classifier can be viewed as a function of
block. A classifier assigns one class to
each point of the input space. The input
space is thus partitioned into disjoint
subsets, called decision regions, each
associated with a class.
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Classification: Terminology (cont.)

Decision regions

Decision boundaries
Input dimension #1

@ Inputs of class A

: : A Inputs of class B
Input dimension #2

 The way a classifier classifies inputs is
defined by its decision regions.

« The borderlines between decision regions
are called decision-region boundaries or
simply decision boundaries.
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Classification: Terminology (cont.)

O © A A
O
. . © spoo 4
Input dimension #1 © o0 a
O A
O OA
A A

Input dimension #2

In practice, input vectors of different classes are
rarely so neatly distinguishable. Samples of
different classes may have same input vectors.
Due to such a uncertainty, areas of input space
can be clouded by a mixture of samples of
different classes.
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Classification: Terminology (cont.)

Input dimension #1

Input dimension #2

* The optimal classifier is the one expected
to produce the least number of
misclassifications( ).

* Such misclassifications are due to
uncertainty in the problem rather than a
deficiency in the decision regions.
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Classification: Terminology (cont.)

* A designed classifier is said to generalize
well if the classifier achieves similar
classification accuracy to both training
samples and real world samples

Input dimension #2

Input dimension #1
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